

Тенденции развития отрасли транспортных систем в области транспортного планирования и моделирования

Олег Васильев ктн, начальник сектора транспортной аналитики транспортно-инженерного центра Института Генплана Москвы

Тенденции развития отрасли транспортных систем в области транспортного планирования и моделирования

Транспортная система должна обеспечивать перспективную структуру мобильности, при этом исключая отставание от темпов застройки. Отставание приводит к ухудшению уровня транспортного обслуживания и экологического состояния; росту социальной напряженности и снижению безопасности.

Выявлять перегруженные участки УДС, места скопления пассажиров (участки маршрутов), посетителей объектов (для своевременной разработки

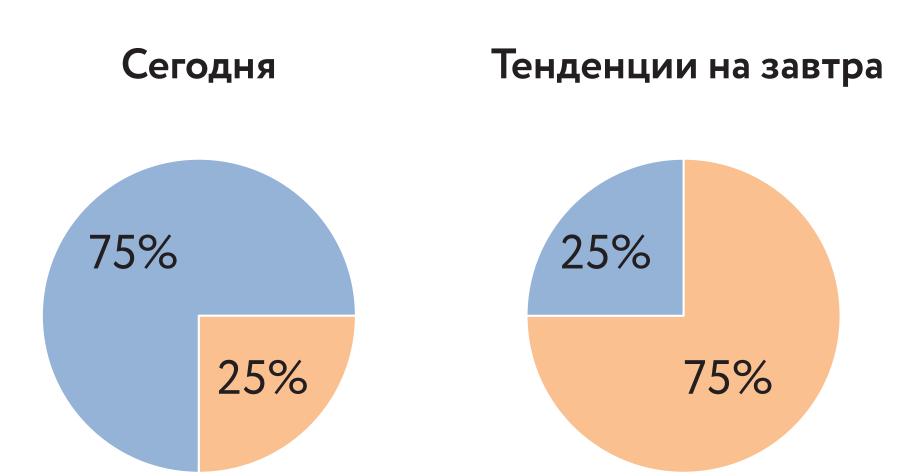
градостроительных решений)

Моделирование позволяет

Анализировать влияние особых условий движения для анализа последствий: перекрытия отдельных улиц и линий пассажирского транспорта; ограничения проезда/прохода (снижение пропускной, провозной способности)

На основе НИР подготовить решения для перехода к новой мобильности - ATC, ЭТС, с обоснованием их эффективной доли в автопарке (с оценкой экологических и иных рисков)

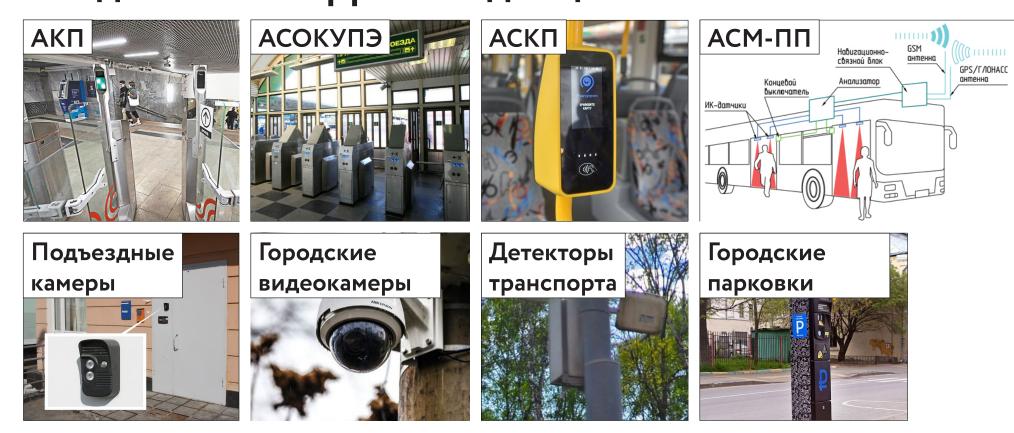
Моделирование должно быть связано с единой информационной средой для применения в городском планировании.


Перекрестная проверка

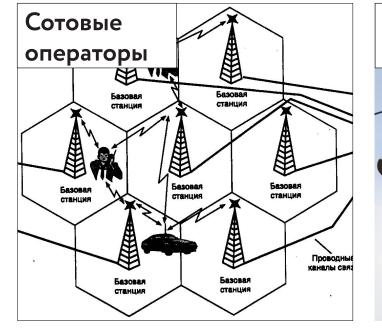
Анализ

Корреляция данных Верификация данных

Виды современных данных и тенденции их применения в области транспортного моделирования


- Опросы о транспортном поведении
- Подсчет потоков с городских видеокамер
- Натурные обследования потоков, въезда-выезда
- Подсчет въезда-выезда через вход/выход из домов с подъездных видеокамер

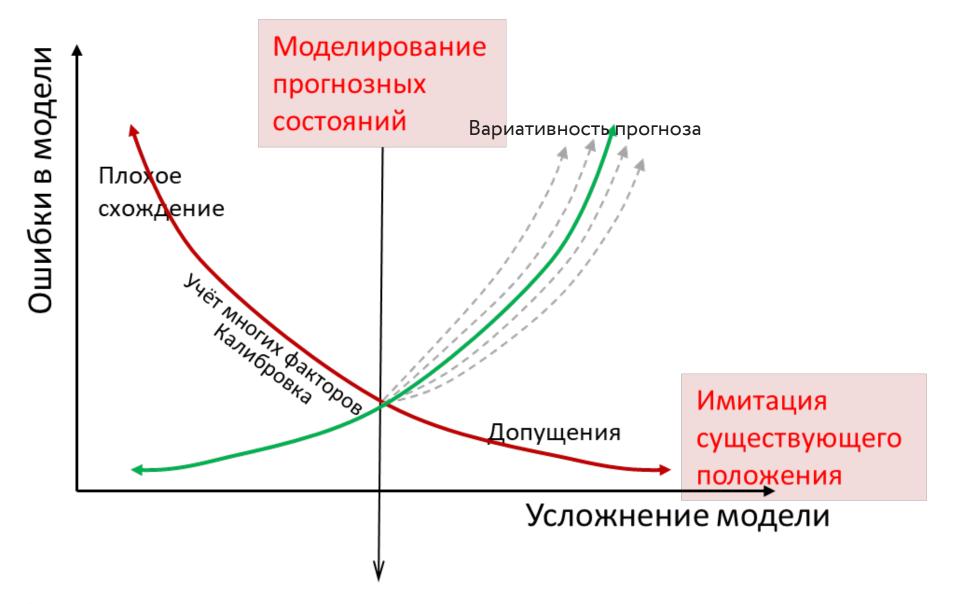
Обработка выборок из больших данных:


- Сотовые операторы
- Детекторы транспорта
- Комплексы ФВФ
- Билетная база АКП, АСКП, АСОКУПЭ,
- Пассажиропоток АСМ-ПП
- Платные парковки

Системы автоматического наблюдения, сбора и анализа данных о потоках ТС, пассажиров

Частичные данные о перемещениях, нет данных о корреспонденциях

Полная информация о корреспонденциях



Проблематика построения прогнозов в транспортной модели с учетом всей совокупности современных данных

Множество исходных данных = вариативность прогноза

Вариативность моделирования

Рост объема и разнообразия доступных данных ведет к пропорциональному росту числа комбинаций факторов, что делает прогноз неоднозначным.

При этом, автоматизация обработки данных позволит интегрировать их в единый набор, обеспечив перекрестную проверку и верификацию.

Вариативность системы расселения и прогнозируемой

нагрузки, доля трудоспособного населения, периоды реализации застройки

Вариативность состояния транспортной системы,

очередность реализации объектов транспорта; безопасность пребывания на территории

Вариативность структуры транспортной мобильности:

- удаленная работа
- стоимость проезда, парковки, эксплуатации ТС
- каршеринг
- размер, состав, доход семьи

уровень обслуживания на ГПТ и УДС

ATC, 9TC

мобильные сервисы

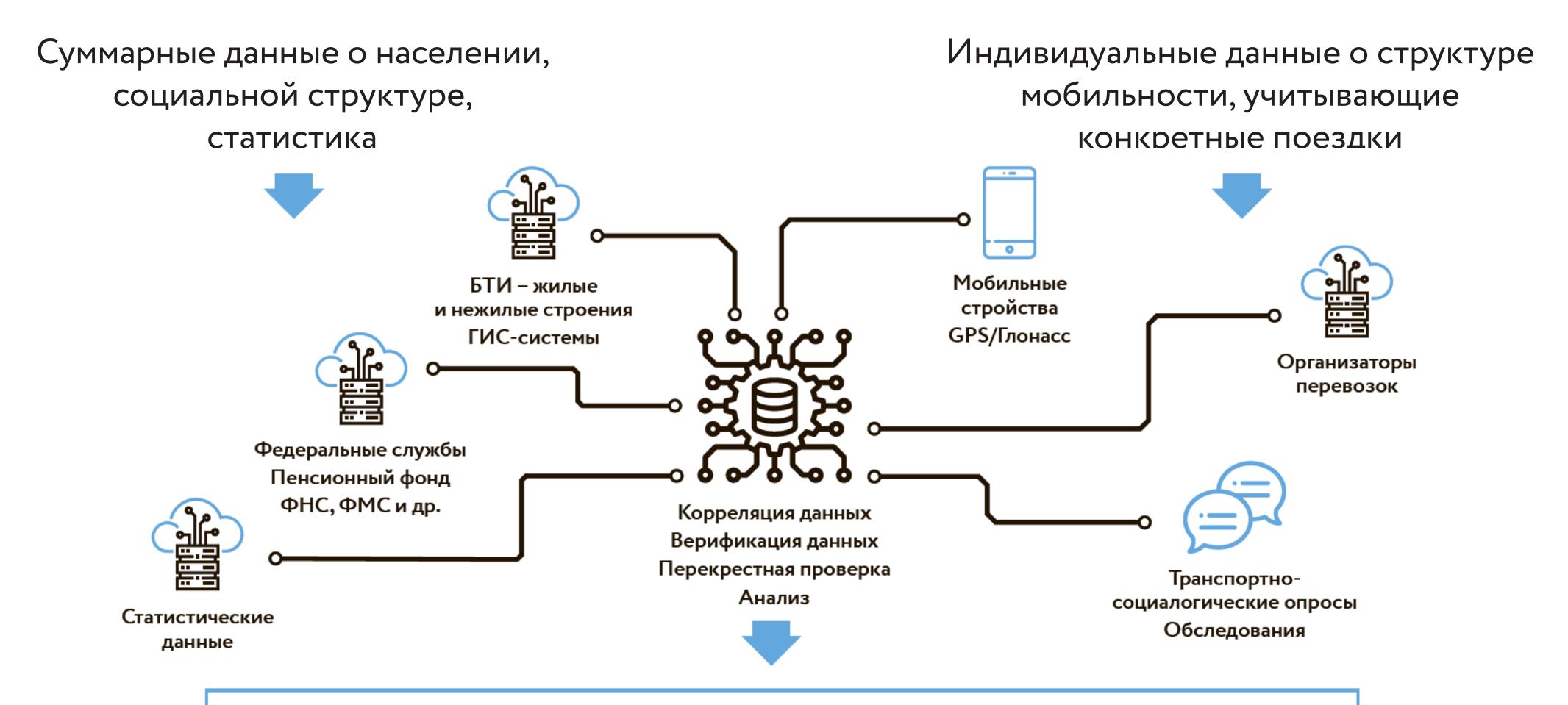
значимость фактора надежности транспортной системы

Тенденции развития в области сбора, анализа и применения данных

Вчера	Сегодня	Завтра
 натурные замеры; наблюдение в метро и на прочих видах транспорта (накопление данных) детекторы, видеокамеры данные о проходах через турникеты 	 совершенствуются методики обработки данных появляются новые алгоритмы растет вычислительная мощность 	 дальнейшее усовершенствование алгоритмов обработки, основанное на все возрастающем объеме доступных данных (в т.ч. алгоритмы Machine Learning) расширение практического применения накопленных данных использование в моделировании
применение данных при разработке отдельных территорий	Появляется возможность объединения различных источников данных для взаимной проверки и корректировки; растет доля автоматической обработки данных. Необходима подготовка к внедрению «новой мобильности» (учет в град. документации)	Практическое применение накопленных данных не будет ограничиваться локальными объектами – технологии позволят использовать данные и полученные закономерности интегрировано на всей территории города

Дальнейшее развитие транспортного прогнозирования

С ростом вычислительных мощностей и развитием методов обработки данных станет возможным:


- 🗜 учет перемещений каждого человека с анализом транспортного поведения
- агрегация данных по тем или иным социальным, территориальным и иным признакам
- применение моделей, базирующиеся на активности (activity based model), которые в отличие от усредненных моделей позволяют учесть множество отдельных факторов.

В конечном итоге, целью является повышение эффективности компьютерного анализа и практического применения его результатов в городском планировании и управлении.

Появление новых средств мобильности – ЭТС и АТС требует комплексного анализа влияния на инфраструктуру, энергию и окружающую среду для учета в градостроительной документации.

Интеграция различных систем сбора, анализа и применения данных в единую информационную среду

Качественные данные по подвижности населения в разрезе социальных групп:

Население и его состав, рабочие места, трудовая маятниковая миграция, количество и вид поездок и их характеристики в территориальном/временном/сезонном и социальном разрезах

Анализ трендов

Построение прогнозов

Разработка программ и мероприятий