

Практическое применение методов численного моделирования для оценки взрывоустойчивости конструкций

к.т.н., зав. отделом перспективных исследований ЗАО НТЦ ПБ

Софьин Антон Сергеевич (495) 620-47-47; e-mail: toxi@safety.ru

08.2024

Направления деятельности Группы компаний «Промышленная безопасность»:

- разработка проектов методик и нормативов в области промышленной безопасности, в том числе в области количественной оценки риска аварий;
- разработка разделов проектной документации для опасных производственных объектов (обоснование безопасности ОПО, специальные технические условия, декларации промышленной безопасности и т.д.);
- экспертиза промышленной безопасности;
- подготовка, обучение, повышение квалификации;
- издание нормативных документов и журнала Ростехнадзора «Безопасность труда в промышленности»;
- разработка специализированного программного обеспечения в области оценки последствий аварий и количественных показателей риска:

Серия программных комплексов

- •более 90 действующих лицензиатов коммерческой версии (научные, проектные, экспертные организации)
- •более 15 академических лицензиатов (ВУЗов).

www.safety.ru

www.toxi.ru

www.btpnadzor.ru

Распределение аварий по видам, %

Статистические данные

Данные из госдоклада Ростехнадзора¹

Аварии со взрывом составляют 27-66% от всех аварий на объектах нефтехимической промышленности

Вид	Количество аварий					
аварии	3а 2020 год		3а 2021 год		За 2022 год	
Взрыв	3	33%	6	60%	3	27%
Выброс опасных веществ	4	45%	2	20%	3	27%
Иные виды	2	22%	2	20%	5	46%
Итого	9	100	10	100%	11	100%

¹ Годовые отчеты о деятельности Федеральной службы по экологическому, технологическому и атомному надзору в 2021 и 2022 году

Аварии с участием взрывопожароопасных веществ

Анализ аварийности показывает, что большинство крупных аварий произошли вследствие взрыва топливновоздушных смесей с последующим разрушением зданий и сооружений на опасных производственных объектах

(ОПО).

г. Хемел Хемпстед, (Великобритания), Нефтехранилище Buncefield 11.12.2005

г. Пыть-Ях,Тюменская обл. (Россия), «РН-Юганскнефтегаз», НК «Роснефть» 21.10.2015

ХМАО (Россия), ЛПДС "Конда" АО «Сибнефтепровод» 22.08.2009

г.Саннадзаро-де-Бургонди (Италия) нефтеперерабатывающий завод Eni 01.12.2016

г. Ачинск (Россия), Ачинский НПЗ НК «Роснефть» 15.06.2014

г. Фобург-на-Дунае (Германия) нефтеперерабатывающий завод Bayernoil 01.09.2018

ростехнадзор

ВЗРЫВОУСТОЙЧИВОСТЬ — <u>свойство зданий и сооружений сохранять</u> с <u>заданной вероятностью устойчивость к взрывам</u> от аварий на опасном производственном объекте (РУКОВОДСТВО ПО БЕЗОП. МЕТОДЫ ОБОСНОВАНИЯ ВЗРЫВОУСТОЙЧИВОСТИ ЗС ПРИ ВЗРЫВАХ ТОПЛИВНО-ВОЗДУШНЫХ СМЕСЕЙ НА ОПО);

МИНСТРОЙ

ВЗРЫВОУСТОЙЧИВОСТЬ — под условным термином понимается предельное давление во фронте взрывной волны, которое могут воспринять конструкции здания без потери ими несущей способности или пригодности к дальнейшей эксплуатации (ПОСОБИЕ ПО ОБСЛЕДОВАНИЮ И ПРОЕКТИРОВАНИЮ ЗДАНИЙ И СООРУЖЕНИЙ, ПОДВЕРЖЕННЫХ ВОЗДЕЙСТВИЮ ВЗРЫВНЫХ НАГРУЗОК. 2000 г. АО «ЦНИИПромзданий»);

MAC

ВЗРЫВОУСТОЙЧИВОСТЬ — свойства оборудования, строительных конструкций, транспортных средств, энергетических систем и линий связи противостоять благодаря запасу прочности и целесообразному расположению поражающему воздействию взрыва (Термины МЧС);

roct

ВЗРЫВОУСТОЙЧИВОСТЬ — Способность защитной конструкции противостоять прямому воздействию продуктов детонации, сохраняя целостность конструкции и обеспечивая защиту от несанкционированного доступа в защищаемую зону (ГОСТ Р 57471-2017 Конструкции взрывозащитные металлические. Общие технические требования и методы испытаний).

.

Нормативное и методическое обеспечение взрывоустойчивости

Требования обеспечения взрывоустойчивости зданий и сооружений

ст. 11. 16. 30 Ф3 «**Технический** регламент о безопасности зданий и сооружений» от 30.12.2009 N 384-Ф3 (с изм.);

РБ «**Методы обоснования**

взрывоустойчивости зданий и

сооружений при взрывах

топливно-воздушных смесей на

опасных производственных

объектах», утв. приказом РТН от

13.05.2015 г. №189;

Ф3 "Технический регламент о требованиях пожарной **безопасности**" от 22.07.2008 N 123-Ф3 (с изм.);

ФНиП «**Общие правила** взрывобезопасности для взрывопожароопасных химических, нефтехимических и нефтеперерабатывающих **производств**» Приказ Ростехнадзора от 15.12.2020 N533

ФЕДЕРАЛЬНЫЙ ЗАКОН Документы по безопасности ТЕХНИЧЕСКИЙ РЕГЛАМЕНТ надзорной и разрешительной деятельности в химической, нефтехимической О БЕЗОПАСНОСТИ ЗДАНИЙ и нефтеперерабатывающей промышленности И СООРУЖЕНИЙ Выпуск 37 ФЕДЕРАЛЬНЫЕ НОРМЫ И ПРАВИЛА 2023

ЗДАНИЯ И СООРУЖЕНИЯ

Серия 19 Пожарная безопасност Выпуск 1

Федеральный закон

ТЕХНИЧЕСКИЙ РЕГЛАМЕНТ О ТРЕБОВАНИЯХ ПОЖАРНОЙ БЕЗОПАСНОСТИ

В ОБЛАСТИ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ

«ОБЩИЕ ПРАВИЛА ВЗРЫВОБЕЗОПАСНОСТИ ДЛЯ ВЗРЫВОПОЖАРООПАСНЫХ ХИМИЧЕСКИХ. НЕФТЕХИМИЧЕСКИХ И НЕФТЕПЕРЕРАБАТЫВАЮЩИХ ПРОИЗВОДСТВ»

2023

2023

CII 56 13330 20

производственные здания Актуализированная редакция

СНиП 31-03-2001

Межгосударственный стандарт ГОСТ 12.1.010-76 "Система стандартов безопасности труда. Взрывобезопасность. Общие требования" (введен в действие постановлением Госстандарта СССР от 28 июня 1976 г. N 1581);

СП 296.1325800.2017. «Свод правил. Здания и сооружения. Особые воздействия» (СП 296);

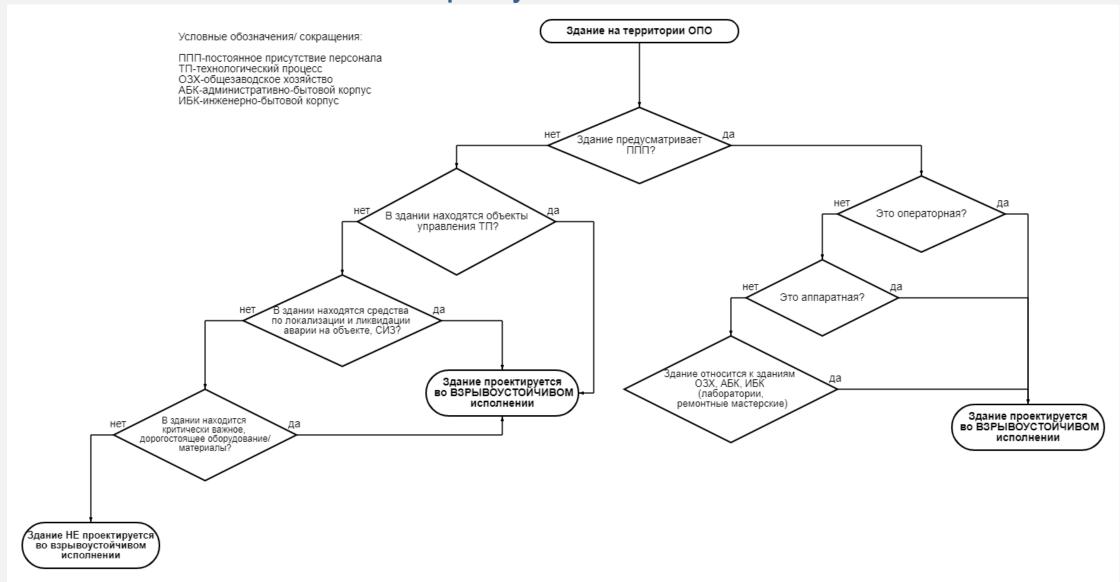
ГОСТ Р 57818-2017. «Нормы проектирования зданий и сооружений газоперерабатывающей промышленности».

СП 56.13330.2021. Свод правил.

Производственные здания. СНиП 31-03-2001"

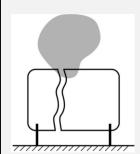
(утв. Приказом Минстроя России

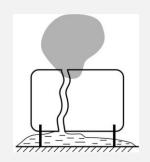
27.12.2021 N 1024/np)

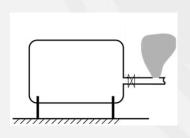

Этапы оценки взрывоустойчивости проектируемых зданий и сооружений

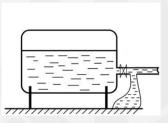
1. Определение перечней зданий/сооружений объекта, для которых необходимо обеспечить взрывоустойчивость 2. Моделирование возможных аварийных ситуаций со взрывной нагрузкой на здания/сооружения 3. Анализ по критерию абсолютной взрывоустойчивости k-ого здания/сооружения $P_{\mathrm{np}.k} > \max_{n=1}^{N} (\Delta P_{\Phi \; n})$ для $\Delta P_{\Phi \; n} > 2,5 imes \mathsf{W}_{0}$ Нет 🕕 4. Расчет избыточного давления $P_{\mathrm{np}.k}^*$, приходящего на здание с Да частотой не более $R_{\rm доп}$. Анализ возможностей снижения риска взрыва Взрывоустойчивость k-ого 5. Проектирование k-ого здания/сооружения для обеспечения здания/сооружения взрывоустойчивости к нагрузке $P_{\mathrm{np},k}^*$ обеспечена

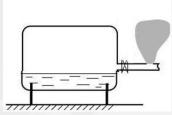
 $P_{{
m np},k}$ - предельное (проектное) давление на фронту взрывной волны, на которое рассчитано k-ое здание/сооружение; $\Delta P_{\Phi \ n}$ - избыточное давление падающей взрывной волны сценария аварии n;

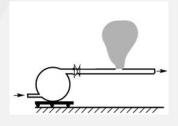

W0 – ветровое давление в регионе; Rдоп – допустимая частота воздействия взрыва на здания.

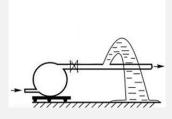

Определение перечней зданий/сооружений объекта, для которых необходимо обеспечить взрывоустойчивость



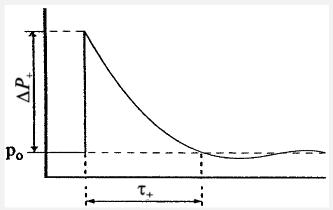

Моделирование поступления ОВ в окружающую среду


- 1. Определяется перечень оборудования, в котором обращаются взрывопожароопасные вещества согласно проекту
- 2. Для каждого оборудования определяется перечень аварийных событий (полное или частичное разрушение), согласно рекомендациям Руководств по безопасности Ростехнадзора;
- 3. Для каждого аварийного события выполняется моделирование поступления взрывопожароопасных веществ в окружающую среду с помощью физико-математических моделей Руководств по безопасности Ростехнадзора;

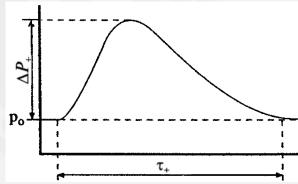




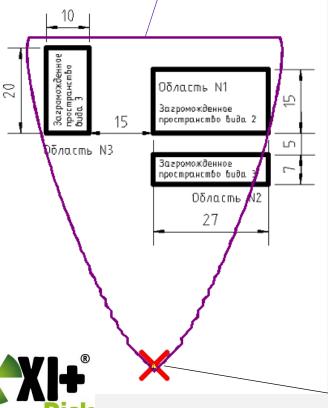
4. Для разных типов оборудования, веществ и условий аварии на ОПО могут реализовываться различные варианты взрывов.


^{*}Выполняется с помощью программного комплекса

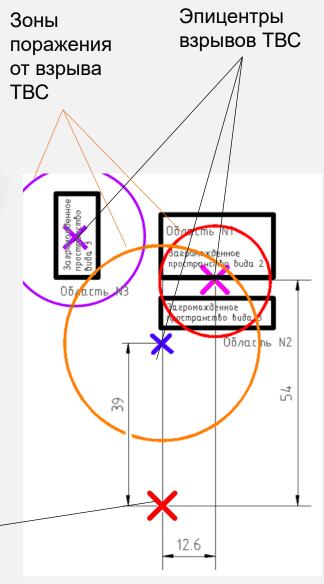
Виды взрывов на ОПО


- 1. Физический взрыв сжатого газа
- 2. Взрывное вскипания паров перегретой жидкости (BLEVE)
- 3. Взрыв конденсированного взрывчатого вещества
- 4. Горение топливно-воздушной смеси (ТВС) с образованием волны давления

Характерный профиль ударной волны


Характерный профиль волны давления в результате дефлаграционного горения облака ТВС

Особенности моделирования горения облаков ТВС


- 1. На основе параметров поступления ОВ в окружающее пространство определяются начальные параметры облаков ТВС;
- 2. Моделируется дрейф облаков ТВС в окружающем пространстве и определяется зона возможного воспламенения (концентрация горючего выше нижнего концентрационного предела распространения пламени);

Область взрывоопасных концентраций

- 3. Определяются места возможных источников воспламенения или зона наибольшей загроможденности пространства во взрывоопасной зоне дрейфа облака ТВС;
- 4. Выполняется моделирование взрывов в указанных местах с учетом загроможденности пространства и класса чувствительности горючего и массы горючего в загроможденной области

Место выброса

Основные типы математических моделей аварийных процессов

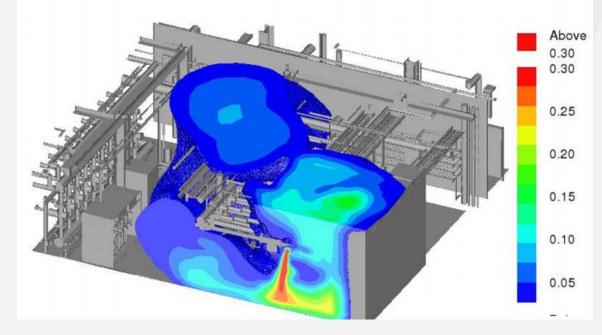
T X + Risk

1. Упрощенные модели – параметрические или интегральные.

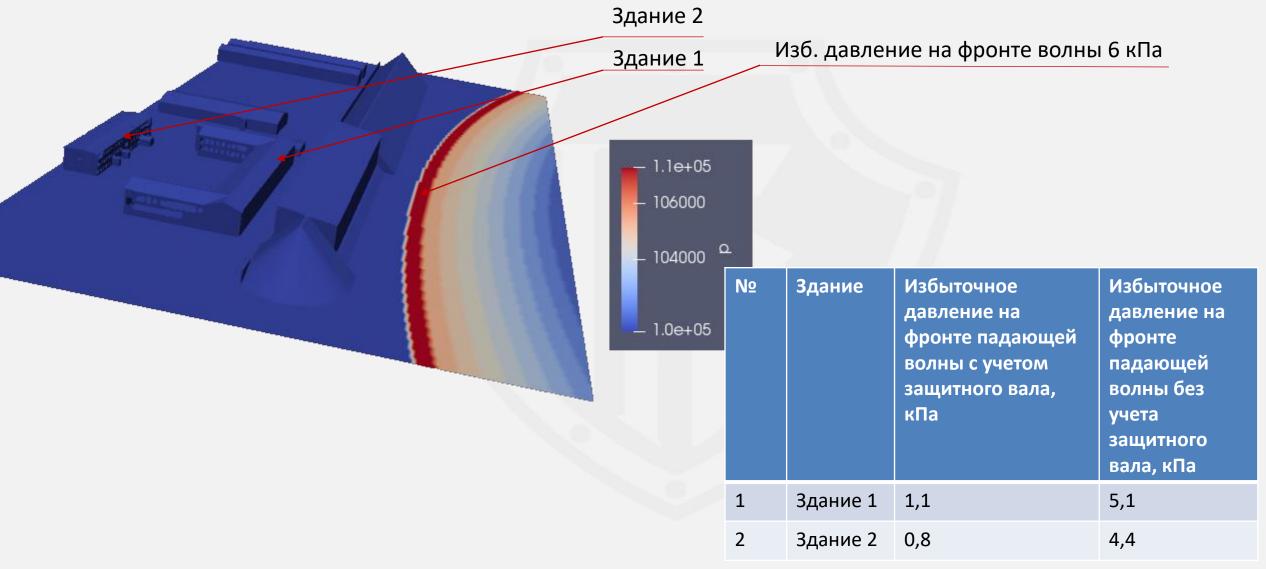
Позволяют с высокой скоростью прогнозировать последствия аварии. Это основные модели, которые используются при расчете показателей риска. <u>Не учитывают взаимодействие волны давления с окружающими объектами. Позволяют получить значение параметров падающей волны давления.</u>

Руководство по безопасности «Методика моделирования распространения аварийных выбросов опасных веществ» Руководство по безопасности «Методика оценки последствий аварийных взрывов топливно-воздушных смесей» Руководство по безопасности «Методика оценки риска аварий на опасных производственных объектах магистрального транспорта газа»

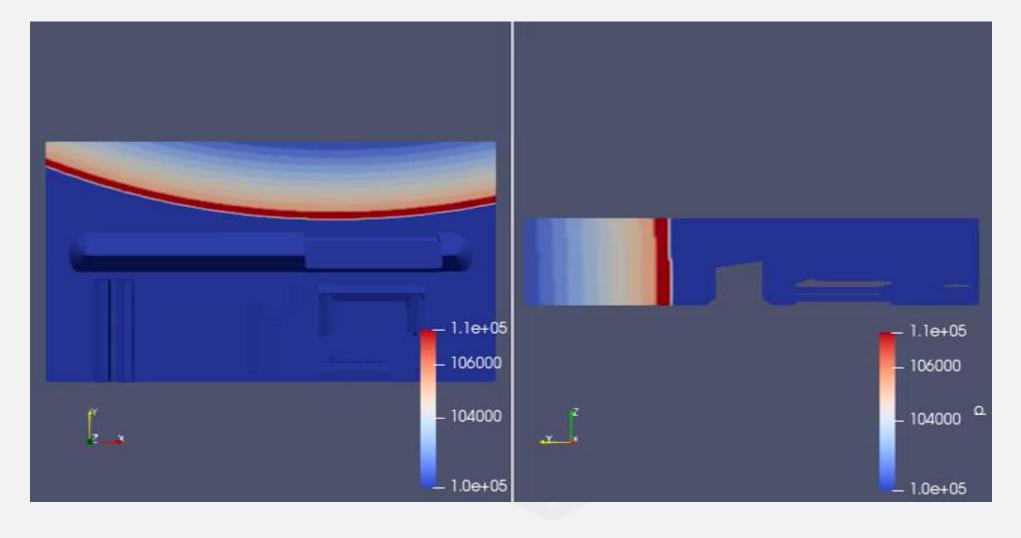
Зоны распространения ударной волны при взрыве ТВС:


× - место выброса; × - место воспламенения облака

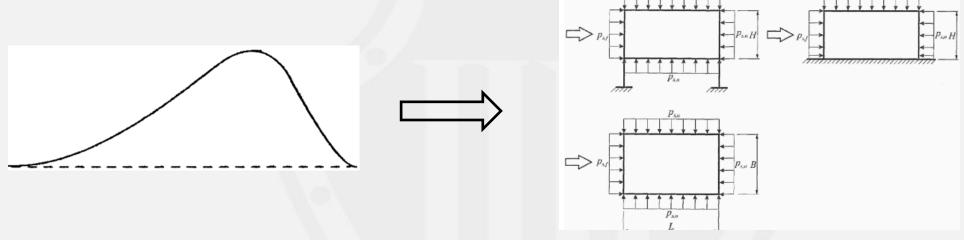
Nº	Значение избыточного давления, кПа	Радиус зоны, м	Цвет
1	5	212	
2	14	70	
3	28	29	


Основные типы математических моделей аварийных процессов

- 2. Численное решение уравнений гидрогазодинамики (CFD Computational Fluid Dynamic) в лагранжевой или эйлеровой для 1D-3D;
 - Такие модели позволяют наиболее точно описать физические процессы, учитывать множество факторов, например, загроможденность пространства, рельеф местности, отражение и дифракцию волн давления на объектах окружающего пространства и т.д.
 - <u>Однако их применение затруднено высокой трудоемкостью расчетов, из-за чего их сложно принять для расчета показателей риска</u>.

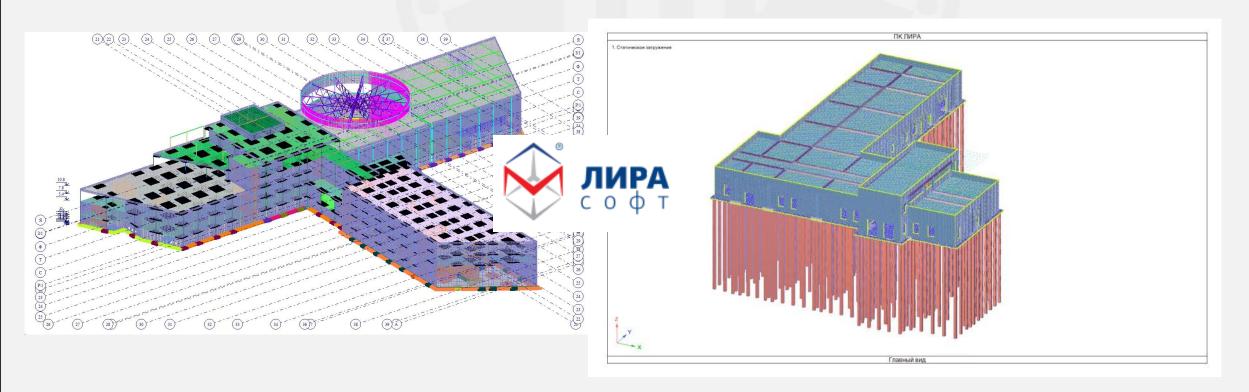

Руководство по безопасности «Методика оценки последствий аварий на взрывопожароопасных химических производствах»

Применение CFD моделей. Отражение и дифракция взрывной волны на препятствии


Применение CFD моделей. Отражение и дифракция взрывной волны на препятствии

Определение нагрузки на здания/сооружения

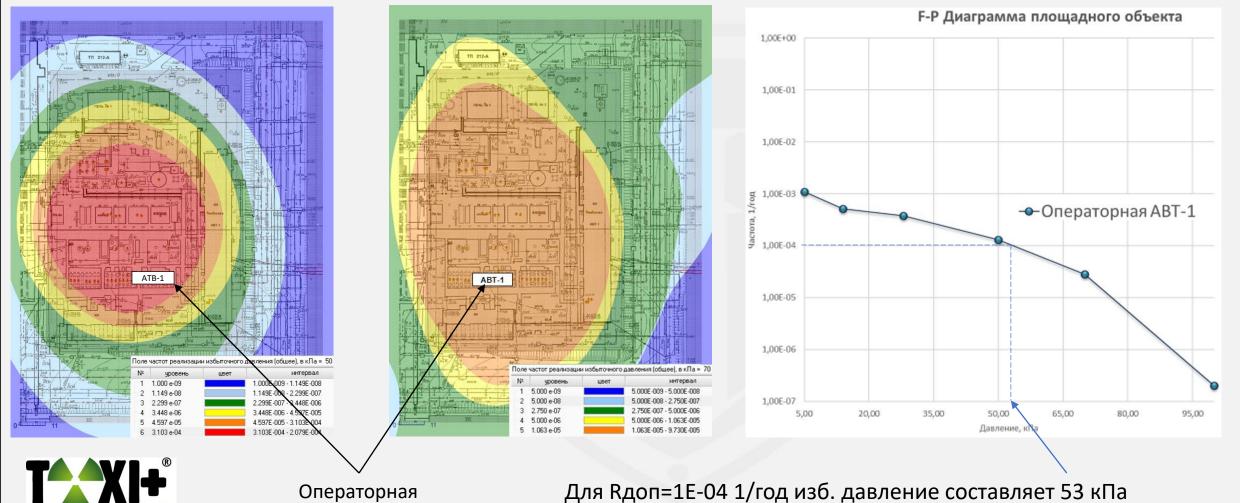
СП 296.1325800.2017. «Свод правил. Здания и сооружения. Особые воздействия» регламентирует определение эквивалентной статической нагрузки на здания/сооружения, которые применяются в прочностных расчетах. Эквивалентная статическая нагрузка определяется, исходя из параметров падающей волны давления и параметров

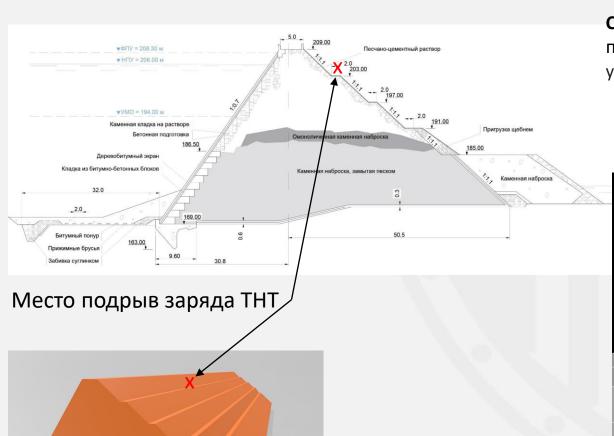

Перевод из динамической нагрузки в эквивалентную статическую осуществляется при помощи коэффициентов динамичности (Кд), которые в СП296 приведены только для зданий, имеющих прямоугольную форму в плане. Если здание имеет более сложную форму, необходима оценка Кд!

В современных программных комплексах расчета прочности конструкций (например, Лира) также существует возможность задания динамической нагрузки на элементы конструкции. При этом такая нагрузка должна учитывать суперпозицию падающей и отраженной от конструкции волны давления.

Расчет устойчивости здания под нагрузкой

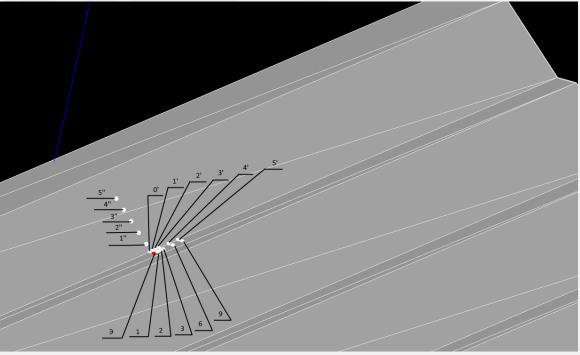
СП 56.13330.2021. Свод правил. **Производственные здания.** СНиП 31-03-2001 (утв. Приказом Минстроя России от 27.12.2021 N 1024/пр)


5.2.2 Здания, которые могут быть подвержены воздействию внешних аварийных взрывов (пункты управления, операторные и т.п.), следует выполнять взрывоустойчивыми. Во взрывоустойчивых зданиях должны быть исключена возможность разрушения основных несущих и ограждающих конструкций и обеспечена защита людей, работающих в этом здании.

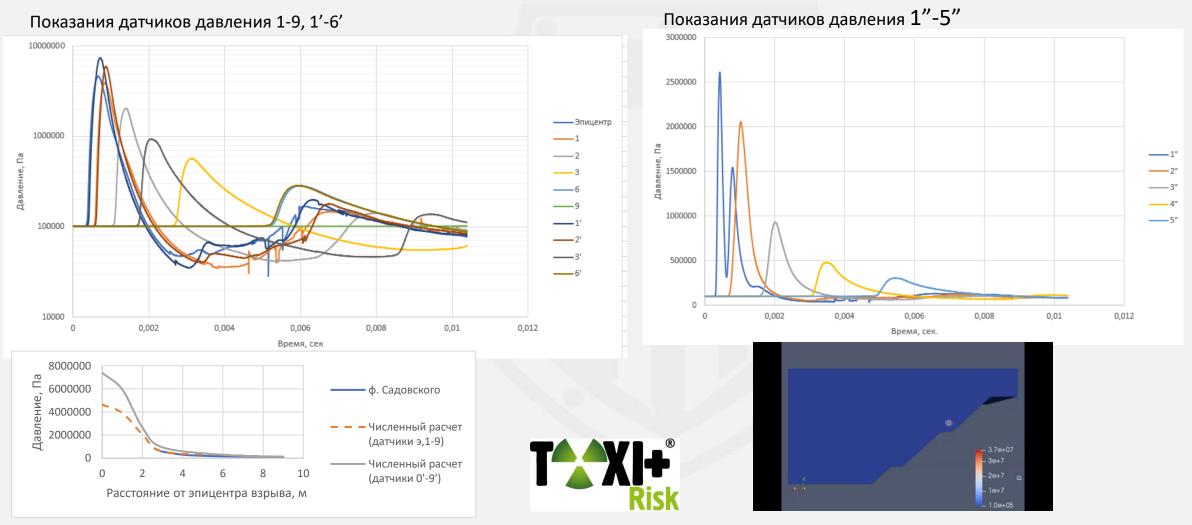

Вероятностный подход к оценке предельной нагрузки на здание/сооружение

Поля частот реализации избыточного давления, 1/год

Поле частот для давления 50 и более кПа Поле частот для давления 70 и более кПа



При этом максимальное изб. давление взрыва на здание >100 кПа



Сценарий: проникновение на склон плотины со стороны нижнего бьефа, подрыв заряда ТНТ массой 10 кг на берме (ниже нормального подпорного уровня водохранилища (НПУ))


Этап 1. Определение взрывной нагрузки. Расположение датчиков давления

Этап 1. Результаты расчета взрывной нагрузки на конструкцию

Этап 2. Передача нагрузки в ПК Лира 10.12. Область вокруг взрыва разбивалась на окружность (эпицентр) и кольцевые элементы вокруг эпицентра, в каждом из которых нагрузка характеризовалась одинаковой зависимостью давление-время и имела упрощенную форму. Например:

Учитывалась не только фаза сжатия, но и фаза разряжения взрывной нагрузки

Этап 3. Выполнение прочностного расчета в модуле Динамика+ ПК Лира 10.12

Расчетная модель и место приложения нагрузки

2.1. Доновае ческая интурка (упинае сина)

Расчетная модель и место приложения нагрузки

Опинае пои приложения

Для оценки устойчивости каменно-набросной плотины к действию взрыва оценивались параметры перемещений и главных напряжений:

- Площадь разрушенного взрывом верхнего слоя участка плотины составляет около 314 м² (эффективный круг радиусом 10 м);
- Максимальные перемещения не превышают 330 мм, что соответствует критериям безопасности показателей состояния каменно-набросной плотины;
- В целом разрушения от взрыва 10 кг ТНТ носят локальный характер и не повлияют на общую устойчивость каменно-набросной плотины;
- Оцененный объем разрушенной части бьефа и откоса каменно-набросной плотины в результате взрыва составил 103,6 м3.

Проверка результатов по известным аналитическим формулам: Радиус разрушений от ударной волны $r=5m_{tnt}^{1/3}=\underline{11\ m}$

Радиус полного разрушения зданий по формуле Садовского (100 кПа) 7 м

Выводы

- Представлены нормативные предпосылки для оценки взрывоустойчивости зданий и сооружений;
- Приведены алгоритмы оценки в взрывоустойчивости с использованием детерминированного и вероятностного подхода;
- Показаны основные стадии и подходы к моделированию взрывов и их особенности;
- Представлено решение задачи об отражении и дифракции волны давления на защитном препятствии;
- Представлено решение задачи об оценке последствий взрыва в результате несанкционированного вмешательства.

Всегда актуальная информация в журнале Ростехнадзора

