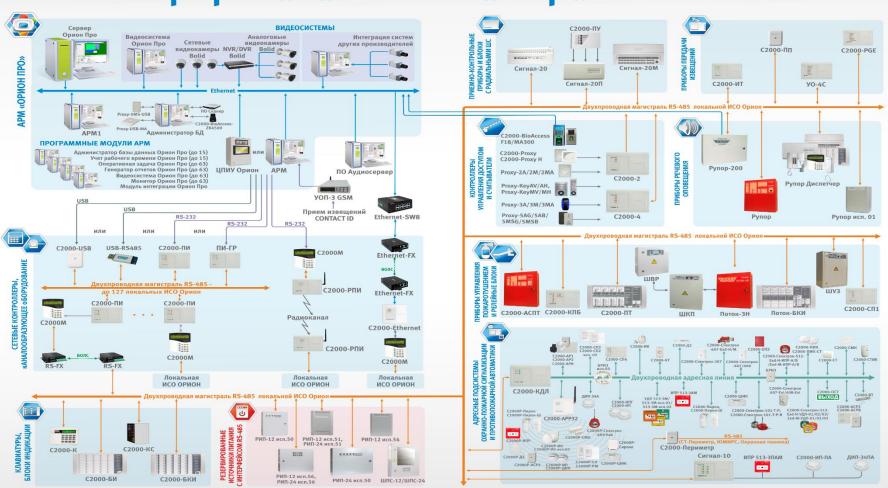
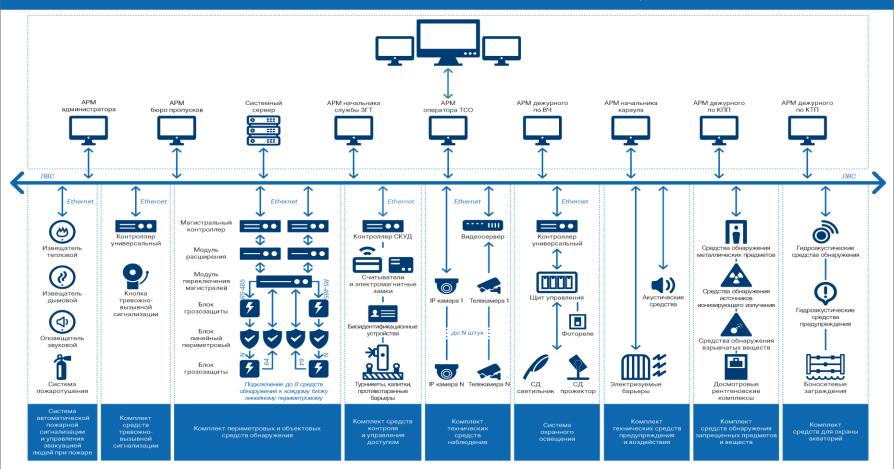


Доклад старшего научного сотрудника, кандидата технических наук Вадима Александровича Гапоненко


ИТСО, входящие в состав СОБ, объединяются в интегрированные системы, которые носят различные названия:

интегрированная система безопасности (ИСБ); интегрированный комплекс технических средств охраны (ИК ТСО);

система физической защиты (СФЗ)


Примечание: Далее для технической составляющей СОБ будет применяться сокращение – Интегрированный комплекс

Интегрированая система охраны «ОРИОН»

ИК TCO «Кедр-СМВ»

АППАРАТУРА УПРАВЛЕНИЯ, СБОРА И ОБРАБОТКИ ИНФОРМАЦИИ

ОСНОВНЫЕ ЗАДАЧИ, РЕШАЕМЫЕ СОБ ПРИ ОБЕСПЕЧЕНИИ ЗАЩИЩЕННОСТИ ОБЪЕКТОВ ОТ ЭВЕНТУАЛЬНЫХ УГРОЗ

- 1.Непрерывный контроль оперативной обстановки на охраняемой территории, в зданиях и сооружениях.
- 2.Предупреждение несанкционированного доступа к предметам охраны (сооружения, изделия, материальные ценности).
- 3.Своевременное обнаружение несанкционированного доступа в охраняемую зону и попыток совершения противоправных действий.
- 4.Нейтрализация противоправных действий в отношении предметов охраны.

ОСНОВНЫЕ ЗАДАЧИ, РЕШАЕМЫЕ СОБ ПРИ ОБЕСПЕЧЕНИИ ЗАЩИЩЕННОСТИ ОБЪЕКТОВ ОТ ЭВЕНТУАЛЬНЫХ УГРОЗ (продолжение)

- 5.Безопасный санкционированный доступ персонала и транспорта на территорию и в охраняемые зоны объекта.
- 6.Непрерывный автоматизированный контроль проноса (провоза) запрещенных материалов.
- 7.Непрерывный информационный обмен между Интегрированным комплексом и подразделениями охраны.
- 8. Автоматическое документирование информационных потоков (сигналов срабатывания ИТСО, видеоинформации, команд и распоряжений).

ОСНОВНЫЕ ЗАДАЧИ, РЕШАЕМЫЕ СОБ ПРИ ОБЕСПЕЧЕНИИ ЗАЩИЩЕННОСТИ ОБЪЕКТОВ ОТ ЭВЕНТУАЛЬНЫХ УГРОЗ (продолжение)

- 9.Согласованное, рациональное и целенаправленное задействование сил и средств СОБ.
- 10.Возможность наращивания сил и средств СОБ при воздействии на объект, а также при возникновении в районе расположения объекта каких-либо чрезвычайных ситуаций техногенного и природного характера.
- 11.Согласованность действий сил и средств СОБ объекта с действиями подразделений ФСБ, МВД, Росгвардии, МЧС и органов местной власти

СТРУКТУРА СОБ

(зоны охраны)

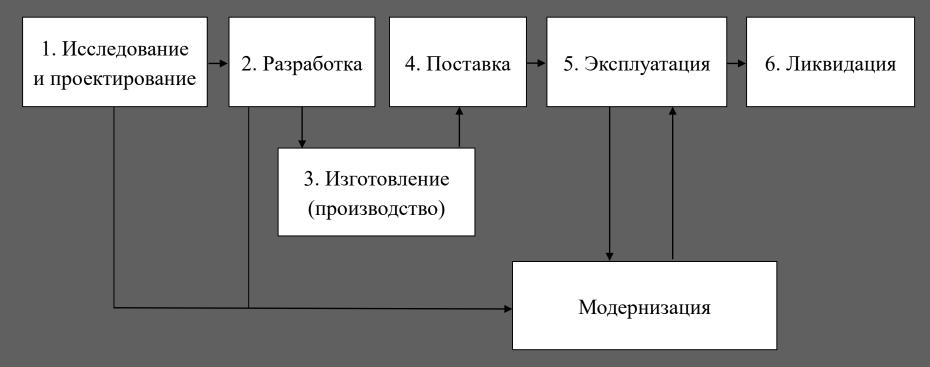
<u>Техническая территория</u> — участок местности, на котором расположены предметы охраны: здания, сооружения, помещения, технологические установки, материальный ценности, транспортные средства, а также их элементы и совокупности.

Защищенная зона — локальная зона внутри технической территории, формируемая вокруг сооружения или группы сооружений, в которых находятся предметы охраны.

Внутренняя зона — отдельное сооружение с предметом охраны, находящееся в защищенной зоне;

<u>Особо важная зона</u> — это хранилища, помещения, в которых осуществляется постоянное или временное содержание и эксплуатация предметов охраны.

особенности соб


- 1.Функциональные подсистемы СОБ включают как личный состав подразделений охраны, так и ИТСО из состава Интегрированного комплекса.
- 2.Реализация функциональных подсистем Интегрированного комплекса в виде строительных конструкций, местоположение которых привязано к структурным единицам (рубежи и зоны охраны) и остается неизменным в процессе выполнения СОБ своего основного назначения.
- 3.СОБ в процессе эксплуатации функционирует в полном объеме, только в случае отражения воздействия на объект.
- 4.На качество функционирования элементов Интегрированного комплекса, оказывает моральное и физическое старение ИТСО из его состава.
- Примечание: 1. Моральное старение Интегрированного комплекса связано с развитием охранной техники, а также изменением уровня эвентуальных угроз.
 - 2. Физическое с процессами износа и влияния на ИТСО климатических факторов (температуры, влажности и т.п).

- 1.Системами, которые возможно никогда не будут использованы по предназначению, то есть эвентуальные угрозы на каком-то конкретном объекте могут быть не реализованы.
- 2.Сложными системами, то есть человекомашинными системами, состоящими из элементов различной природы (Интегрированный комплекс и подразделение охраны) и обладающими разнородными связями между ними.

ВЗАИМОСВЯЗЬ СТАДИЙ ЖИЗНЕННОГО ЦИКЛА СЛОЖНЫХ ТЕХНИЧЕСКИХ СИСТЕМ ПО ВРЕМЕНИ ВЫПОЛНЕНИЯ ВИДОВ РАБОТ

ВЗАИМОСВЯЗЬ СТАДИЙ ЖИЗНЕННОГО ЦИКЛА ИНТЕГРИРОВАННОГО КОМПЛЕКСА ПО ВРЕМЕНИ ВЫПОЛНЕНИЯ ВИДОВ РАБОТ

ПЕРВЫЙ СПОСОБ РЕАЛИЗАЦИИ ЖИЗНЕННОГО ЦИКЛА ИНТЕГРИРОВАННОГО КОМПЛЕКСА

Для создания Интегрированного комплекса проводятся НИР и ОКР по разработке ИТСО и подсистемы управления.

В этом случае типовой жизненный цикл Интегрированного комплекса включает в себя также жизненные циклы специально разработанных для его реализации ИТСО.

ВТОРОЙ СПОСОБ К РЕАЛИЗАЦИИ ЖИЗНЕННОГО ЦИКЛА ИНТЕГРИРОВАННОГО КОМПЛЕКСА

В составе варианта Интегрированного комплекса используются только серийно выпускаемые ИТСО. Основная задача:

НИР – обоснование структуры, тактико-технических требований, а также состава ИТСО в Интегрированном комплексе.

ОКР – разработка подсистемы управления Интегрированного комплекса, обеспечивающей интеграцию ИТСО и учитывающей специфику построения и функционирования защищаемого объекта.

14

ТРЕТИЙ СПОСОБ К РЕАЛИЗАЦИИ ЖИЗНЕННОГО ЦИКЛА ИНТЕГРИРОВАННОГО КОМПЛЕКСА

В составе варианта Интегрированного комплекса используются только серийно выпускаемые ИТСО и подсистема управления. Создание варианта Интегрированного комплекса осуществляется «проектным» способом.

НИР и ОКР не проводятся.

В виде этапа НИР выполняется только обоснование структуры и состава варианта Интегрированного комплекса, результатом которого является технико-экономическое обоснование.

Этап ОКР сводится к разработке проектной и эксплуатационной документации на Интегрированный комплекс.

Из этапа производства выполняются только строительство, монтаж и наладка Интегрированного комплекса.

АНАЛИЗ СПОСОБОВ РЕАЛИЗАЦИИ ЖИЗНЕННОГО ЦИКЛА ИНТЕГРИРОВАННОГО КОМПЛЕКСА

Способ	Преимущества	Недостатки
Первый	Полный учет особенностей защищаемого объекта, а также обеспечивается единая с защищаемым объектом система эксплуатации всех элементов Интегрированного комплекса, что существенно сокращает расходы на поддержание СОБ в готовности к применению	Срок развертывания СОБ на объекте 7 – 10 лет. Такие сроки не позволяют в полном объеме реализовать преимущество данного подхода к созданию СОБ из-за возможного рассогласования достигнутого и требуемого уровня защищенности объекта на момент оснащения объекта таким Интегрированным комплексом (требуется прогноз уровня угроз на 20 – 25 лет)
Второй	Максимально возможное удовлетворение требований по обеспечению защиты объекта, а также приведение мероприятий по эксплуатации различных средств, включенных в состав Интегрированного комплекса, к единой системе эксплуатации с защищаемым объектом	Срок развертывания СОБ на объекте 5 – 7 лет. Требуется прогноз уровня угроз до 15 лет
Третий «ПРОЕКТНЫЙ»	Максимально короткое время развертывания Интегрированного комплекса на защищаемом объекте	Техническая и функциональная избыточность в подсистеме управления и достаточно сложная система эксплуатации, что увеличивает эксплуатационные расходы

ОСНОВНЫЕ НАПРАВЛЕНИЯ НАУЧНО-ТЕХНИЧЕСКОГО СОПРОВОЖДЕНИЯ РАБОТ ПО ФОРМИРОВАНИЮ ВАРИАНТОВ СОЗДАНИЯ, МОДЕРНИЗАЦИИ И ПОДДЕРЖАНИЯ В ГОТОВНОСТИ К ПРИМЕНЕНИЮ ПО НАЗНАЧЕНИЮ СОБ

- 1. Обоснование, в ходе проведения НИР, тактико-технико-экономических требований к новой СОБ или к модернизированному Интегрированному комплексу с оформлением ТТЗ на ОКР или задания на проектирование.
- 2. Оценка ТТХ СОБ в процессе эксплуатации Интегрированного комплекса (поддержания в готовности) с выдачей рекомендаций по применению СОБ по назначению.
- 3. Подтверждению заданных требований на разработку Интегрированного комплекса на этапах: испытаний опытного образца, серийного производства, ввода в эксплуатацию и модернизации.
- 4. Планирование проведения и анализ результатов технического обслуживания и ремонта Интегрированного комплекса.
- 5. Выбор исполнителей работ на стадиях исследования, разработки, производства и модернизации Интегрированного комплекса.

СТРУКТУРА НАУЧНО-МЕТОДИЧЕСКОГО ОБЕСПЕЧЕНИЯ СОПРОВОЖДЕНИЯ ЖИЗНЕННОГО ЦИКЛА СОБ

Первый блок (блок реализации первого и второго направлений) — определение функций, структуры и показателей качества функционирования системы СОБ.

Второй блок (блок реализации первого и второго направлений) — определение оптимального варианта создания или применения по назначению СОБ.

Третий блок (блок реализации третьего направления) — разработка программ и методик проведения испытаний, анализа качества производства и монтажа (строительства) Интегрированного комплекса.

Четвертый блок (блок реализации четвертого направления) — разработка программно-методических документов для проведения технического обслуживания и ремонта Интегрированного комплекса.

Пятый блок (блок реализации пятого направления) — сравнительный анализ и выбор исполнителей работ.

СОСТОЯНИЕ РАЗВИТИЯ НАУЧНО-МЕТОДИЧЕСКОГО СОПРОВОЖДЕНИЯ ЖИЗНЕННОГО ЦИКЛА СОБ

Реализация третьего и четвертого блоков задач научнометодического обеспечения (НМО) сопровождения жизненного цикла СОБ достаточно полно отражена в ГОСТах системы разработки и постановки продукции на производство (СРПП).

О назначении, цели и задачах ГОСТ группы 15 СРПП можно ознакомиться в ГОСТ Р 15.000-2016 СРПП Основные положения.

СОСТОЯНИЕ РАЗВИТИЯ НАУЧНО-МЕТОДИЧЕСКОГО СОПРОВОЖДЕНИЯ ЖИЗНЕННОГО ЦИКЛА СОБ

(продолжение)

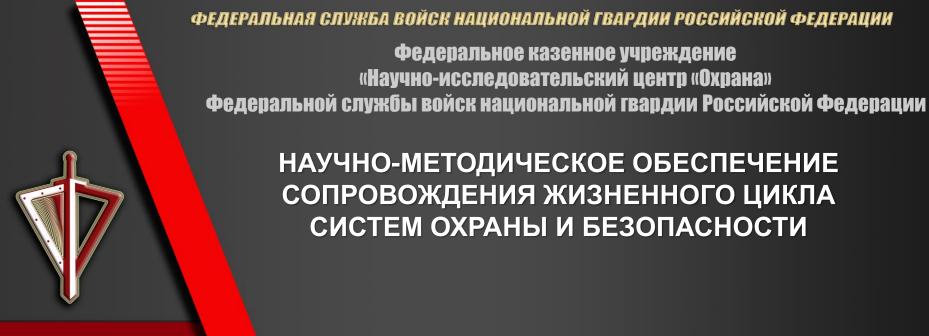
Решение задачи пятого блока задач НМО сопровождения жизненного цикла СОБ стало актуальным только последние 15 – 20 лет когда сформировалась новая отрасль экономики представленная как государственными, так и частными компаниями, которые заняты в сфере разработки и производства ИТСО и Интегрированных комплексов различного предназначения, а также оказывают услуги в области обеспечения охраны и безопасности объектов любой сложности.

Для решения данной задачи, как правило, используются методы оценки экономической состоятельности предприятий и организаций.

НЕОБХОДИМЫЕ УСЛОВИЯ СОЗДАНИЯ НМО СОПРОВОЖДЕНИЯ ЖИЗНЕННОГО ЦИКЛА СОБ, ОБЕСПЕЧИВАЮЩЕГО РЕШЕНИЯ ЗАДАЧ ПЕРВОГО И ВТОРОГО БЛОКОВ

Проведение на уровне ФОИВ или в других организаций, эксплуатирующих объекты:

- 1) анализа социально-политической обстановки в стране и в мире для определения угроз объекту (некоторой группе объектов одного назначения) с целью выделения из всей совокупности возможных эвентуальных угроз только тех, которые могут реализованы на этом объекте различными типами нарушителей;
- 2) анализа целей, мотивов и способов воздействия на объекты выделенных типов нарушителей для их ранжирования по степени опасности;
- 3) категорирования объектов по степени важности и другим классификационным признакам, учитывающим особенности объектов и предметов защиты, находящихся (эксплуатируемых) на них.


ОСНОВНЫЕ МЕТОДИКИ НМО СОПРОВОЖДЕНИЯ ЖИЗНЕННОГО ЦИКЛА СОБ, ОБЕСПЕЧИВАЮЩИЕ РЕШЕНИЕ ЗАДАЧ ПЕРВОГО И ВТОРОГО БЛОКОВ

- 1) методика определения оптимального варианта СОБ как совокупности Интегрированного комплекса (структура, состав и алгоритмы функционирования ИТСО) и подразделения охраны (численность и способы применения) на стадиях создания, модернизации и применения по назначению;
- 2) методика оценки морального и физического старения Интегрированного комплекса и определения мероприятий по его поддержанию в готовности к применению по назначению;
- 3) методика определения рациональной численности обслуживающего персонала, обеспечивающего поддержание Интегрированного комплекса в готовности к применению по назначению.

ПРОБЛЕМНЫЕ ВОПРОСЫ СОЗДАНИЯ МОДЕЛЕЙ И МЕТОДИК РЕШЕНИЯ ЗАДАЧ ПЕРВОГО И ВТОРОГО БЛОКОВ НМО СОПРОВОЖДЕНИЯ ЖИЗНЕННОГО ЦИКЛА СОБ

- 1) отсутствуют формализованные правила, построения конечного множества вариантов создания, модернизации и поддержания в готовности применения по предназначению СОБ, выполняющих необходимую совокупность функций для парирования эвентуальных угроз с требуемой значимостью вклада каждой функции системы в процесс антикриминальной и антитеррористической защиты объекта.
- 2) не определены <u>принципы оптимальности</u> правила выбора из сформированного конечного множества вариантов СОБ оптимального варианта с учетом долгосрочного прогноза изменения уровня эвентуальных угроз объекту как от каждого типа нарушителя, так и от их совокупности;
- 3) не разработаны универсальные модели охраны, учитывающие специфику разнообразных объектов и позволяющие определять эффективность СОБ при противодействии различным типам нарушителей при использовании ими некоторой совокупности способов (сценариев) воздействия на охраняемый объект;
- 4) не разработаны методы определения совокупности функций СОБ, необходимой для парирования эвентуальных угроз и определения значимости вклада каждой функции в процесс антикриминальной и антитеррористической защиты объекта.

 23

Доклад старшего научного сотрудника, кандидата технических наук Вадима Александровича Гапоненко